Metamath Proof Explorer


Theorem iedginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021)

Ref Expression
Hypothesis iedginwlk.i I=iEdgG
Assertion iedginwlk FunIFWalksGPX0..^FIFXranI

Proof

Step Hyp Ref Expression
1 iedginwlk.i I=iEdgG
2 simp1 FunIFWalksGPX0..^FFunI
3 1 wlkf FWalksGPFWorddomI
4 3 3ad2ant2 FunIFWalksGPX0..^FFWorddomI
5 simp3 FunIFWalksGPX0..^FX0..^F
6 wrdsymbcl FWorddomIX0..^FFXdomI
7 4 5 6 syl2anc FunIFWalksGPX0..^FFXdomI
8 fvelrn FunIFXdomIIFXranI
9 2 7 8 syl2anc FunIFWalksGPX0..^FIFXranI