Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
umgrf |
|- ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
4 |
|
isacycgr |
|- ( G e. UMGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
5 |
4
|
biimpa |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
6 |
2
|
umgr2cycl |
|- ( ( G e. UMGraph /\ E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
7 |
|
2ne0 |
|- 2 =/= 0 |
8 |
|
neeq1 |
|- ( ( # ` f ) = 2 -> ( ( # ` f ) =/= 0 <-> 2 =/= 0 ) ) |
9 |
7 8
|
mpbiri |
|- ( ( # ` f ) = 2 -> ( # ` f ) =/= 0 ) |
10 |
|
hasheq0 |
|- ( f e. _V -> ( ( # ` f ) = 0 <-> f = (/) ) ) |
11 |
10
|
elv |
|- ( ( # ` f ) = 0 <-> f = (/) ) |
12 |
11
|
necon3bii |
|- ( ( # ` f ) =/= 0 <-> f =/= (/) ) |
13 |
9 12
|
sylib |
|- ( ( # ` f ) = 2 -> f =/= (/) ) |
14 |
13
|
anim2i |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) -> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
15 |
14
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
16 |
6 15
|
syl |
|- ( ( G e. UMGraph /\ E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
17 |
16
|
ex |
|- ( G e. UMGraph -> ( E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
18 |
17
|
con3d |
|- ( G e. UMGraph -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) ) |
19 |
18
|
adantr |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) ) |
20 |
5 19
|
mpd |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> -. E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) |
21 |
|
dff15 |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } /\ -. E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) ) |
22 |
21
|
biimpri |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } /\ -. E. j e. dom ( iEdg ` G ) E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` j ) = ( ( iEdg ` G ) ` k ) /\ j =/= k ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
23 |
3 20 22
|
syl2an2r |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
24 |
1 2
|
isusgrs |
|- ( G e. UMGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
25 |
24
|
biimprd |
|- ( G e. UMGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> G e. USGraph ) ) |
26 |
25
|
adantr |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> G e. USGraph ) ) |
27 |
23 26
|
mpd |
|- ( ( G e. UMGraph /\ G e. AcyclicGraph ) -> G e. USGraph ) |