Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
umgrf |
⊢ ( 𝐺 ∈ UMGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
4 |
|
isacycgr |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ AcyclicGraph ↔ ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
5 |
4
|
biimpa |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
6 |
2
|
umgr2cycl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
7 |
|
2ne0 |
⊢ 2 ≠ 0 |
8 |
|
neeq1 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) ≠ 0 ↔ 2 ≠ 0 ) ) |
9 |
7 8
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ♯ ‘ 𝑓 ) ≠ 0 ) |
10 |
|
hasheq0 |
⊢ ( 𝑓 ∈ V → ( ( ♯ ‘ 𝑓 ) = 0 ↔ 𝑓 = ∅ ) ) |
11 |
10
|
elv |
⊢ ( ( ♯ ‘ 𝑓 ) = 0 ↔ 𝑓 = ∅ ) |
12 |
11
|
necon3bii |
⊢ ( ( ♯ ‘ 𝑓 ) ≠ 0 ↔ 𝑓 ≠ ∅ ) |
13 |
9 12
|
sylib |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → 𝑓 ≠ ∅ ) |
14 |
13
|
anim2i |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
15 |
14
|
2eximi |
⊢ ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
16 |
6 15
|
syl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) |
17 |
16
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) ) ) |
18 |
17
|
con3d |
⊢ ( 𝐺 ∈ UMGraph → ( ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ¬ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → ( ¬ ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ 𝑓 ≠ ∅ ) → ¬ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) ) |
20 |
5 19
|
mpd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → ¬ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) |
21 |
|
dff15 |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ¬ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) ) |
22 |
21
|
biimpri |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ¬ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
23 |
3 20 22
|
syl2an2r |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
24 |
1 2
|
isusgrs |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
25 |
24
|
biimprd |
⊢ ( 𝐺 ∈ UMGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐺 ∈ USGraph ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐺 ∈ USGraph ) ) |
27 |
23 26
|
mpd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph ) → 𝐺 ∈ USGraph ) |