Metamath Proof Explorer


Theorem upgreupthi

Description: Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i I=iEdgG
upgriseupth.v V=VtxG
Assertion upgreupthi GUPGraphFEulerPathsGPF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 upgriseupth.v V=VtxG
3 1 2 upgriseupth GUPGraphFEulerPathsGPF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1
4 3 biimpa GUPGraphFEulerPathsGPF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1