Metamath Proof Explorer


Theorem upgriseupth

Description: The property " <. F , P >. is an Eulerian path on the pseudograph G ". (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 18-Feb-2021) (Revised by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i I=iEdgG
upgriseupth.v V=VtxG
Assertion upgriseupth GUPGraphFEulerPathsGPF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 eupths.i I=iEdgG
2 upgriseupth.v V=VtxG
3 1 iseupthf1o FEulerPathsGPFWalksGPF:0..^F1-1 ontodomI
4 3 a1i GUPGraphFEulerPathsGPFWalksGPF:0..^F1-1 ontodomI
5 2 1 upgriswlk GUPGraphFWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
6 5 anbi1d GUPGraphFWalksGPF:0..^F1-1 ontodomIFWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomI
7 simpr FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIF:0..^F1-1 ontodomI
8 simpl2 FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIP:0FV
9 simpl3 FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIk0..^FIFk=PkPk+1
10 7 8 9 3jca FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1
11 f1of F:0..^F1-1 ontodomIF:0..^FdomI
12 iswrdi F:0..^FdomIFWorddomI
13 11 12 syl F:0..^F1-1 ontodomIFWorddomI
14 13 3anim1i F:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
15 simp1 F:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomI
16 14 15 jca F:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomI
17 10 16 impbii FWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1
18 17 a1i GUPGraphFWorddomIP:0FVk0..^FIFk=PkPk+1F:0..^F1-1 ontodomIF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1
19 4 6 18 3bitrd GUPGraphFEulerPathsGPF:0..^F1-1 ontodomIP:0FVk0..^FIFk=PkPk+1