Metamath Proof Explorer


Theorem upgreupthseg

Description: The N -th edge in an eulerian path is the edge from P ( N ) to P ( N + 1 ) . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis upgreupthseg.i I = iEdg G
Assertion upgreupthseg G UPGraph F EulerPaths G P N 0 ..^ F I F N = P N P N + 1

Proof

Step Hyp Ref Expression
1 upgreupthseg.i I = iEdg G
2 eqid Vtx G = Vtx G
3 1 2 upgreupthi G UPGraph F EulerPaths G P F : 0 ..^ F 1-1 onto dom I P : 0 F Vtx G n 0 ..^ F I F n = P n P n + 1
4 2fveq3 n = N I F n = I F N
5 fveq2 n = N P n = P N
6 fvoveq1 n = N P n + 1 = P N + 1
7 5 6 preq12d n = N P n P n + 1 = P N P N + 1
8 4 7 eqeq12d n = N I F n = P n P n + 1 I F N = P N P N + 1
9 8 rspccv n 0 ..^ F I F n = P n P n + 1 N 0 ..^ F I F N = P N P N + 1
10 9 3ad2ant3 F : 0 ..^ F 1-1 onto dom I P : 0 F Vtx G n 0 ..^ F I F n = P n P n + 1 N 0 ..^ F I F N = P N P N + 1
11 3 10 syl G UPGraph F EulerPaths G P N 0 ..^ F I F N = P N P N + 1
12 11 3impia G UPGraph F EulerPaths G P N 0 ..^ F I F N = P N P N + 1