| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgreupthseg.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 1 2 | upgreupthi |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) ) | 
						
							| 4 |  | 2fveq3 |  |-  ( n = N -> ( I ` ( F ` n ) ) = ( I ` ( F ` N ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( n = N -> ( P ` n ) = ( P ` N ) ) | 
						
							| 6 |  | fvoveq1 |  |-  ( n = N -> ( P ` ( n + 1 ) ) = ( P ` ( N + 1 ) ) ) | 
						
							| 7 | 5 6 | preq12d |  |-  ( n = N -> { ( P ` n ) , ( P ` ( n + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) | 
						
							| 8 | 4 7 | eqeq12d |  |-  ( n = N -> ( ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } <-> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
							| 9 | 8 | rspccv |  |-  ( A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
							| 12 | 11 | 3impia |  |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |