| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgreupthseg.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upgreupthi | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) } ) ) | 
						
							| 4 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑁  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ‘ 𝑛 )  =  ( 𝑃 ‘ 𝑁 ) ) | 
						
							| 6 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ‘ ( 𝑛  +  1 ) )  =  ( 𝑃 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 7 | 5 6 | preq12d | ⊢ ( 𝑛  =  𝑁  →  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) | 
						
							| 8 | 4 7 | eqeq12d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  ↔  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) ) | 
						
							| 9 | 8 | rspccv | ⊢ ( ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) }  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑛 ) )  =  { ( 𝑃 ‘ 𝑛 ) ,  ( 𝑃 ‘ ( 𝑛  +  1 ) ) } )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) ) | 
						
							| 12 | 11 | 3impia | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) )  =  { ( 𝑃 ‘ 𝑁 ) ,  ( 𝑃 ‘ ( 𝑁  +  1 ) ) } ) |