Metamath Proof Explorer


Theorem upgrpredgv

Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021)

Ref Expression
Hypotheses upgredg.v V=VtxG
upgredg.e E=EdgG
Assertion upgrpredgv GUPGraphMUNWMNEMVNV

Proof

Step Hyp Ref Expression
1 upgredg.v V=VtxG
2 upgredg.e E=EdgG
3 1 2 upgredg GUPGraphMNEmVnVMN=mn
4 3 3adant2 GUPGraphMUNWMNEmVnVMN=mn
5 preq12bg MUNWmVnVMN=mnM=mN=nM=nN=m
6 5 3ad2antl2 GUPGraphMUNWMNEmVnVMN=mnM=mN=nM=nN=m
7 eleq1 m=MmVMV
8 7 eqcoms M=mmVMV
9 8 biimpd M=mmVMV
10 eleq1 n=NnVNV
11 10 eqcoms N=nnVNV
12 11 biimpd N=nnVNV
13 9 12 im2anan9 M=mN=nmVnVMVNV
14 13 com12 mVnVM=mN=nMVNV
15 eleq1 n=MnVMV
16 15 eqcoms M=nnVMV
17 16 biimpd M=nnVMV
18 eleq1 m=NmVNV
19 18 eqcoms N=mmVNV
20 19 biimpd N=mmVNV
21 17 20 im2anan9 M=nN=mnVmVMVNV
22 21 com12 nVmVM=nN=mMVNV
23 22 ancoms mVnVM=nN=mMVNV
24 14 23 jaod mVnVM=mN=nM=nN=mMVNV
25 24 adantl GUPGraphMUNWMNEmVnVM=mN=nM=nN=mMVNV
26 6 25 sylbid GUPGraphMUNWMNEmVnVMN=mnMVNV
27 26 rexlimdvva GUPGraphMUNWMNEmVnVMN=mnMVNV
28 4 27 mpd GUPGraphMUNWMNEMVNV