Metamath Proof Explorer


Theorem uprcl4

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses uprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
uprcl4.b B = Base D
Assertion uprcl4 φ X B

Proof

Step Hyp Ref Expression
1 uprcl2.x Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
2 uprcl4.b B = Base D
3 eqid Base E = Base E
4 eqid Hom D = Hom D
5 eqid Hom E = Hom E
6 eqid comp E = comp E
7 1 3 uprcl3 φ W Base E
8 1 uprcl2 φ F D Func E G
9 2 3 4 5 6 7 8 isuplem Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) with typecode |-
10 1 9 mpbid φ X B M W Hom E F X y B g W Hom E F y ∃! k X Hom D y g = X G y k W F X comp E F y M
11 10 simplld φ X B