Metamath Proof Explorer


Theorem uprcl5

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses uprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
uprcl5.j J = Hom E
Assertion uprcl5 φ M W J F X

Proof

Step Hyp Ref Expression
1 uprcl2.x Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |-
2 uprcl5.j J = Hom E
3 eqid Base D = Base D
4 eqid Base E = Base E
5 eqid Hom D = Hom D
6 eqid comp E = comp E
7 1 4 uprcl3 φ W Base E
8 1 uprcl2 φ F D Func E G
9 3 4 5 2 6 7 8 isuplem Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. ( Base ` D ) /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( W J ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. ( Base ` D ) /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( W J ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) with typecode |-
10 1 9 mpbid φ X Base D M W J F X y Base D g W J F y ∃! k X Hom D y g = X G y k W F X comp E F y M
11 10 simplrd φ M W J F X