Metamath Proof Explorer


Theorem uptpos

Description: Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
uptpos.h φ tpos G = H
Assertion uptpos Could not format assertion : No typesetting found for |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
2 uptpos.h φ tpos G = H
3 1 2 uptposlem φ tpos H = G
4 3 opeq2d φ F tpos H = F G
5 4 oveq1d Could not format ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) ) : No typesetting found for |- ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) ) with typecode |-
6 5 breqd Could not format ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) ) : No typesetting found for |- ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) ) with typecode |-
7 1 6 mpbird Could not format ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) with typecode |-