Metamath Proof Explorer


Theorem usgr0

Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020)

Ref Expression
Assertion usgr0 USGraph

Proof

Step Hyp Ref Expression
1 f10 :1-1x𝒫|x=2
2 dm0 dom=
3 f1eq2 dom=:dom1-1x𝒫|x=2:1-1x𝒫|x=2
4 2 3 ax-mp :dom1-1x𝒫|x=2:1-1x𝒫|x=2
5 1 4 mpbir :dom1-1x𝒫|x=2
6 0ex V
7 vtxval0 Vtx=
8 7 eqcomi =Vtx
9 iedgval0 iEdg=
10 9 eqcomi =iEdg
11 8 10 isusgr VUSGraph:dom1-1x𝒫|x=2
12 6 11 ax-mp USGraph:dom1-1x𝒫|x=2
13 5 12 mpbir USGraph