Metamath Proof Explorer


Theorem usgr1v0edg

Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Assertion usgr1v0edg GWVtxG=AFuniEdgGGUSGraphEdgG=

Proof

Step Hyp Ref Expression
1 usgr1v GWVtxG=AGUSGraphiEdgG=
2 1 3adant3 GWVtxG=AFuniEdgGGUSGraphiEdgG=
3 funrel FuniEdgGReliEdgG
4 relrn0 ReliEdgGiEdgG=raniEdgG=
5 3 4 syl FuniEdgGiEdgG=raniEdgG=
6 5 3ad2ant3 GWVtxG=AFuniEdgGiEdgG=raniEdgG=
7 edgval EdgG=raniEdgG
8 7 eqcomi raniEdgG=EdgG
9 8 eqeq1i raniEdgG=EdgG=
10 9 a1i GWVtxG=AFuniEdgGraniEdgG=EdgG=
11 2 6 10 3bitrd GWVtxG=AFuniEdgGGUSGraphEdgG=