Metamath Proof Explorer


Theorem usgrexi

Description: An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 5-Nov-2020) (Proof shortened by AV, 10-Nov-2021)

Ref Expression
Hypothesis usgrexi.p P=x𝒫V|x=2
Assertion usgrexi VWVIPUSGraph

Proof

Step Hyp Ref Expression
1 usgrexi.p P=x𝒫V|x=2
2 1 usgrexilem VWIP:domIP1-1x𝒫V|x=2
3 1 cusgrexilem1 VWIPV
4 opiedgfv VWIPViEdgVIP=IP
5 3 4 mpdan VWiEdgVIP=IP
6 5 dmeqd VWdomiEdgVIP=domIP
7 opvtxfv VWIPVVtxVIP=V
8 3 7 mpdan VWVtxVIP=V
9 8 pweqd VW𝒫VtxVIP=𝒫V
10 9 rabeqdv VWx𝒫VtxVIP|x=2=x𝒫V|x=2
11 5 6 10 f1eq123d VWiEdgVIP:domiEdgVIP1-1x𝒫VtxVIP|x=2IP:domIP1-1x𝒫V|x=2
12 2 11 mpbird VWiEdgVIP:domiEdgVIP1-1x𝒫VtxVIP|x=2
13 opex VIPV
14 eqid VtxVIP=VtxVIP
15 eqid iEdgVIP=iEdgVIP
16 14 15 isusgrs VIPVVIPUSGraphiEdgVIP:domiEdgVIP1-1x𝒫VtxVIP|x=2
17 13 16 mp1i VWVIPUSGraphiEdgVIP:domiEdgVIP1-1x𝒫VtxVIP|x=2
18 12 17 mpbird VWVIPUSGraph