Metamath Proof Explorer


Theorem usgrexmpl1edg

Description: The edges { 0 , 1 } , { 1 , 2 } , { 0 , 2 } , { 0 , 3 } , { 3 , 4 } , { 3 , 5 } , { 4 , 5 } of the graph G = <. V , E >. . (Contributed by AV, 3-Aug-2025)

Ref Expression
Hypotheses usgrexmpl1.v V = 0 5
usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
usgrexmpl1.g G = V E
Assertion usgrexmpl1edg Edg G = 0 3 0 1 0 2 1 2 3 4 3 5 4 5

Proof

Step Hyp Ref Expression
1 usgrexmpl1.v V = 0 5
2 usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
3 usgrexmpl1.g G = V E
4 edgval Edg G = ran iEdg G
5 3 fveq2i iEdg G = iEdg V E
6 1 ovexi V V
7 s7cli ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ Word V
8 2 7 eqeltri E Word V
9 opiedgfv V V E Word V iEdg V E = E
10 6 8 9 mp2an iEdg V E = E
11 5 10 eqtri iEdg G = E
12 11 rneqi ran iEdg G = ran E
13 2 rneqi ran E = ran ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
14 prex 0 1 V
15 id 0 1 V 0 1 V
16 prex 0 2 V
17 16 a1i 0 1 V 0 2 V
18 prex 1 2 V
19 18 a1i 0 1 V 1 2 V
20 prex 0 3 V
21 20 a1i 0 1 V 0 3 V
22 prex 3 4 V
23 22 a1i 0 1 V 3 4 V
24 prex 3 5 V
25 24 a1i 0 1 V 3 5 V
26 prex 4 5 V
27 26 a1i 0 1 V 4 5 V
28 15 17 19 21 23 25 27 s7rn 0 1 V ran ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 1 0 2 1 2 0 3 3 4 3 5 4 5
29 14 28 ax-mp ran ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩ = 0 1 0 2 1 2 0 3 3 4 3 5 4 5
30 uncom 0 1 0 2 1 2 0 3 = 0 3 0 1 0 2 1 2
31 30 uneq1i 0 1 0 2 1 2 0 3 3 4 3 5 4 5 = 0 3 0 1 0 2 1 2 3 4 3 5 4 5
32 unass 0 3 0 1 0 2 1 2 3 4 3 5 4 5 = 0 3 0 1 0 2 1 2 3 4 3 5 4 5
33 31 32 eqtri 0 1 0 2 1 2 0 3 3 4 3 5 4 5 = 0 3 0 1 0 2 1 2 3 4 3 5 4 5
34 13 29 33 3eqtri ran E = 0 3 0 1 0 2 1 2 3 4 3 5 4 5
35 4 12 34 3eqtri Edg G = 0 3 0 1 0 2 1 2 3 4 3 5 4 5