Metamath Proof Explorer


Theorem usgrexmpl1tri

Description: G contains a triangle 0 , 1 , 2 , with corresponding edges { 0 , 1 } , { 1 , 2 } , { 0 , 2 } . (Contributed by AV, 3-Aug-2025)

Ref Expression
Hypotheses usgrexmpl1.v V = 0 5
usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
usgrexmpl1.g G = V E
Assertion usgrexmpl1tri Could not format assertion : No typesetting found for |- { 0 , 1 , 2 } e. ( GrTriangles ` G ) with typecode |-

Proof

Step Hyp Ref Expression
1 usgrexmpl1.v V = 0 5
2 usgrexmpl1.e E = ⟨“ 0 1 0 2 1 2 0 3 3 4 3 5 4 5 ”⟩
3 usgrexmpl1.g G = V E
4 c0ex 0 V
5 4 tpid1 0 0 1 2
6 5 orci 0 0 1 2 0 3 4 5
7 elun 0 0 1 2 3 4 5 0 0 1 2 0 3 4 5
8 6 7 mpbir 0 0 1 2 3 4 5
9 1ex 1 V
10 9 tpid2 1 0 1 2
11 10 orci 1 0 1 2 1 3 4 5
12 elun 1 0 1 2 3 4 5 1 0 1 2 1 3 4 5
13 11 12 mpbir 1 0 1 2 3 4 5
14 2ex 2 V
15 14 tpid3 2 0 1 2
16 15 orci 2 0 1 2 2 3 4 5
17 elun 2 0 1 2 3 4 5 2 0 1 2 2 3 4 5
18 16 17 mpbir 2 0 1 2 3 4 5
19 8 13 18 3pm3.2i 0 0 1 2 3 4 5 1 0 1 2 3 4 5 2 0 1 2 3 4 5
20 eqid 0 1 2 = 0 1 2
21 ex-hash 0 1 2 = 3
22 prex 0 1 V
23 22 tpid1 0 1 0 1 0 2 1 2
24 23 orci 0 1 0 1 0 2 1 2 0 1 3 4 3 5 4 5
25 elun 0 1 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 1 0 2 1 2 0 1 3 4 3 5 4 5
26 24 25 mpbir 0 1 0 1 0 2 1 2 3 4 3 5 4 5
27 26 olci 0 1 0 3 0 1 0 1 0 2 1 2 3 4 3 5 4 5
28 elun 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 3 0 1 0 1 0 2 1 2 3 4 3 5 4 5
29 27 28 mpbir 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5
30 prex 0 2 V
31 30 tpid2 0 2 0 1 0 2 1 2
32 31 orci 0 2 0 1 0 2 1 2 0 2 3 4 3 5 4 5
33 elun 0 2 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 1 0 2 1 2 0 2 3 4 3 5 4 5
34 32 33 mpbir 0 2 0 1 0 2 1 2 3 4 3 5 4 5
35 34 olci 0 2 0 3 0 2 0 1 0 2 1 2 3 4 3 5 4 5
36 elun 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 2 0 1 0 2 1 2 3 4 3 5 4 5
37 35 36 mpbir 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
38 prex 1 2 V
39 38 tpid3 1 2 0 1 0 2 1 2
40 39 orci 1 2 0 1 0 2 1 2 1 2 3 4 3 5 4 5
41 elun 1 2 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 1 0 2 1 2 1 2 3 4 3 5 4 5
42 40 41 mpbir 1 2 0 1 0 2 1 2 3 4 3 5 4 5
43 42 olci 1 2 0 3 1 2 0 1 0 2 1 2 3 4 3 5 4 5
44 elun 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 1 2 0 1 0 2 1 2 3 4 3 5 4 5
45 43 44 mpbir 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
46 29 37 45 3pm3.2i 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
47 20 21 46 3pm3.2i 0 1 2 = 0 1 2 0 1 2 = 3 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
48 tpeq1 x = 0 x y z = 0 y z
49 48 eqeq2d x = 0 0 1 2 = x y z 0 1 2 = 0 y z
50 preq1 x = 0 x y = 0 y
51 50 eleq1d x = 0 x y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5
52 preq1 x = 0 x z = 0 z
53 52 eleq1d x = 0 x z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
54 biidd x = 0 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
55 51 53 54 3anbi123d x = 0 x y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 x z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
56 49 55 3anbi13d x = 0 0 1 2 = x y z 0 1 2 = 3 x y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 x z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 2 = 0 y z 0 1 2 = 3 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
57 tpeq2 y = 1 0 y z = 0 1 z
58 57 eqeq2d y = 1 0 1 2 = 0 y z 0 1 2 = 0 1 z
59 preq2 y = 1 0 y = 0 1
60 59 eleq1d y = 1 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5
61 preq1 y = 1 y z = 1 z
62 61 eleq1d y = 1 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
63 60 62 3anbi13d y = 1 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
64 58 63 3anbi13d y = 1 0 1 2 = 0 y z 0 1 2 = 3 0 y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 2 = 0 1 z 0 1 2 = 3 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
65 tpeq3 z = 2 0 1 z = 0 1 2
66 65 eqeq2d z = 2 0 1 2 = 0 1 z 0 1 2 = 0 1 2
67 biidd z = 2 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5
68 preq2 z = 2 0 z = 0 2
69 68 eleq1d z = 2 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
70 preq2 z = 2 1 z = 1 2
71 70 eleq1d z = 2 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
72 67 69 71 3anbi123d z = 2 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
73 66 72 3anbi13d z = 2 0 1 2 = 0 1 z 0 1 2 = 3 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 1 2 = 0 1 2 0 1 2 = 3 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5
74 56 64 73 rspc3ev 0 0 1 2 3 4 5 1 0 1 2 3 4 5 2 0 1 2 3 4 5 0 1 2 = 0 1 2 0 1 2 = 3 0 1 0 3 0 1 0 2 1 2 3 4 3 5 4 5 0 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 1 2 0 3 0 1 0 2 1 2 3 4 3 5 4 5 x 0 1 2 3 4 5 y 0 1 2 3 4 5 z 0 1 2 3 4 5 0 1 2 = x y z 0 1 2 = 3 x y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 x z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
75 19 47 74 mp2an x 0 1 2 3 4 5 y 0 1 2 3 4 5 z 0 1 2 3 4 5 0 1 2 = x y z 0 1 2 = 3 x y 0 3 0 1 0 2 1 2 3 4 3 5 4 5 x z 0 3 0 1 0 2 1 2 3 4 3 5 4 5 y z 0 3 0 1 0 2 1 2 3 4 3 5 4 5
76 1 2 3 usgrexmpl1vtx Vtx G = 0 1 2 3 4 5
77 76 eqcomi 0 1 2 3 4 5 = Vtx G
78 1 2 3 usgrexmpl1edg Edg G = 0 3 0 1 0 2 1 2 3 4 3 5 4 5
79 78 eqcomi 0 3 0 1 0 2 1 2 3 4 3 5 4 5 = Edg G
80 77 79 isgrtri Could not format ( { 0 , 1 , 2 } e. ( GrTriangles ` G ) <-> E. x e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. y e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. z e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) ( { 0 , 1 , 2 } = { x , y , z } /\ ( # ` { 0 , 1 , 2 } ) = 3 /\ ( { x , y } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) /\ { x , z } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) /\ { y , z } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) ) ) ) : No typesetting found for |- ( { 0 , 1 , 2 } e. ( GrTriangles ` G ) <-> E. x e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. y e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) E. z e. ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) ( { 0 , 1 , 2 } = { x , y , z } /\ ( # ` { 0 , 1 , 2 } ) = 3 /\ ( { x , y } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) /\ { x , z } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) /\ { y , z } e. ( { { 0 , 3 } } u. ( { { 0 , 1 } , { 0 , 2 } , { 1 , 2 } } u. { { 3 , 4 } , { 3 , 5 } , { 4 , 5 } } ) ) ) ) ) with typecode |-
81 75 80 mpbir Could not format { 0 , 1 , 2 } e. ( GrTriangles ` G ) : No typesetting found for |- { 0 , 1 , 2 } e. ( GrTriangles ` G ) with typecode |-