Metamath Proof Explorer


Theorem usgrexmpl2edg

Description: The edges { 0 , 1 } , { 1 , 2 } , { 2 , 3 } , { 0 , 3 } , { 3 , 4 } , { 4 , 5 } , { 0 , 5 } of the graph G = <. V , E >. . (Contributed by AV, 3-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
Assertion usgrexmpl2edg Edg G = 0 3 0 1 1 2 2 3 3 4 4 5 0 5

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 edgval Edg G = ran iEdg G
5 3 fveq2i iEdg G = iEdg V E
6 1 ovexi V V
7 s7cli ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ Word V
8 2 7 eqeltri E Word V
9 opiedgfv V V E Word V iEdg V E = E
10 6 8 9 mp2an iEdg V E = E
11 5 10 eqtri iEdg G = E
12 11 rneqi ran iEdg G = ran E
13 2 rneqi ran E = ran ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
14 prex 0 1 V
15 id 0 1 V 0 1 V
16 prex 1 2 V
17 16 a1i 0 1 V 1 2 V
18 prex 2 3 V
19 18 a1i 0 1 V 2 3 V
20 prex 3 4 V
21 20 a1i 0 1 V 3 4 V
22 prex 4 5 V
23 22 a1i 0 1 V 4 5 V
24 prex 0 3 V
25 24 a1i 0 1 V 0 3 V
26 prex 0 5 V
27 26 a1i 0 1 V 0 5 V
28 15 17 19 21 23 25 27 s7rn 0 1 V ran ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 1 1 2 2 3 3 4 4 5 0 3 0 5
29 14 28 ax-mp ran ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩ = 0 1 1 2 2 3 3 4 4 5 0 3 0 5
30 unass 0 1 1 2 2 3 3 4 4 5 0 3 0 5 = 0 1 1 2 2 3 3 4 4 5 0 3 0 5
31 df-tp 4 5 0 3 0 5 = 4 5 0 3 0 5
32 df-pr 4 5 0 3 = 4 5 0 3
33 32 uneq1i 4 5 0 3 0 5 = 4 5 0 3 0 5
34 31 33 eqtri 4 5 0 3 0 5 = 4 5 0 3 0 5
35 34 uneq2i 3 4 4 5 0 3 0 5 = 3 4 4 5 0 3 0 5
36 unass 4 5 0 3 0 5 = 4 5 0 3 0 5
37 uncom 4 5 0 3 0 5 = 0 3 0 5 4 5
38 unass 0 3 0 5 4 5 = 0 3 0 5 4 5
39 36 37 38 3eqtri 4 5 0 3 0 5 = 0 3 0 5 4 5
40 39 uneq2i 3 4 4 5 0 3 0 5 = 3 4 0 3 0 5 4 5
41 uncom 3 4 0 3 0 5 4 5 = 0 3 0 5 4 5 3 4
42 unass 0 3 0 5 4 5 3 4 = 0 3 0 5 4 5 3 4
43 40 41 42 3eqtri 3 4 4 5 0 3 0 5 = 0 3 0 5 4 5 3 4
44 df-tp 3 4 4 5 0 5 = 3 4 4 5 0 5
45 uncom 3 4 4 5 0 5 = 0 5 3 4 4 5
46 df-pr 3 4 4 5 = 3 4 4 5
47 46 equncomi 3 4 4 5 = 4 5 3 4
48 47 uneq2i 0 5 3 4 4 5 = 0 5 4 5 3 4
49 unass 0 5 4 5 3 4 = 0 5 4 5 3 4
50 48 49 eqtr4i 0 5 3 4 4 5 = 0 5 4 5 3 4
51 44 45 50 3eqtrri 0 5 4 5 3 4 = 3 4 4 5 0 5
52 51 uneq2i 0 3 0 5 4 5 3 4 = 0 3 3 4 4 5 0 5
53 35 43 52 3eqtri 3 4 4 5 0 3 0 5 = 0 3 3 4 4 5 0 5
54 53 uneq2i 0 1 1 2 2 3 3 4 4 5 0 3 0 5 = 0 1 1 2 2 3 0 3 3 4 4 5 0 5
55 54 equncomi 0 1 1 2 2 3 3 4 4 5 0 3 0 5 = 0 3 3 4 4 5 0 5 0 1 1 2 2 3
56 unass 0 3 3 4 4 5 0 5 0 1 1 2 2 3 = 0 3 3 4 4 5 0 5 0 1 1 2 2 3
57 uncom 0 1 1 2 2 3 3 4 4 5 0 5 = 3 4 4 5 0 5 0 1 1 2 2 3
58 57 uneq2i 0 3 0 1 1 2 2 3 3 4 4 5 0 5 = 0 3 3 4 4 5 0 5 0 1 1 2 2 3
59 56 58 eqtr4i 0 3 3 4 4 5 0 5 0 1 1 2 2 3 = 0 3 0 1 1 2 2 3 3 4 4 5 0 5
60 30 55 59 3eqtri 0 1 1 2 2 3 3 4 4 5 0 3 0 5 = 0 3 0 1 1 2 2 3 3 4 4 5 0 5
61 13 29 60 3eqtri ran E = 0 3 0 1 1 2 2 3 3 4 4 5 0 5
62 4 12 61 3eqtri Edg G = 0 3 0 1 1 2 2 3 3 4 4 5 0 5