Metamath Proof Explorer


Theorem usgrexmpl2nb0

Description: The neighborhood of the first vertex of graph G . (Contributed by AV, 9-Aug-2025)

Ref Expression
Hypotheses usgrexmpl2.v V = 0 5
usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
usgrexmpl2.g G = V E
Assertion usgrexmpl2nb0 G NeighbVtx 0 = 1 3 5

Proof

Step Hyp Ref Expression
1 usgrexmpl2.v V = 0 5
2 usgrexmpl2.e E = ⟨“ 0 1 1 2 2 3 3 4 4 5 0 3 0 5 ”⟩
3 usgrexmpl2.g G = V E
4 c0ex 0 V
5 4 tpid1 0 0 1 2
6 5 orci 0 0 1 2 0 3 4 5
7 elun 0 0 1 2 3 4 5 0 0 1 2 0 3 4 5
8 6 7 mpbir 0 0 1 2 3 4 5
9 1 2 3 usgrexmpl2nblem 0 0 1 2 3 4 5 G NeighbVtx 0 = n 0 1 2 3 4 5 | 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
10 8 9 ax-mp G NeighbVtx 0 = n 0 1 2 3 4 5 | 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
11 1ex 1 V
12 11 tpid2 1 0 1 2
13 12 orci 1 0 1 2 1 3 4 5
14 elun 1 0 1 2 3 4 5 1 0 1 2 1 3 4 5
15 13 14 mpbir 1 0 1 2 3 4 5
16 3ex 3 V
17 16 tpid1 3 3 4 5
18 17 olci 3 0 1 2 3 3 4 5
19 elun 3 0 1 2 3 4 5 3 0 1 2 3 3 4 5
20 18 19 mpbir 3 0 1 2 3 4 5
21 5nn0 5 0
22 21 elexi 5 V
23 22 tpid3 5 3 4 5
24 23 olci 5 0 1 2 5 3 4 5
25 elun 5 0 1 2 3 4 5 5 0 1 2 5 3 4 5
26 24 25 mpbir 5 0 1 2 3 4 5
27 tpssi 1 0 1 2 3 4 5 3 0 1 2 3 4 5 5 0 1 2 3 4 5 1 3 5 0 1 2 3 4 5
28 3orcoma n = 3 n = 1 n = 5 n = 1 n = 3 n = 5
29 3orass n = 3 n = 1 n = 5 n = 3 n = 1 n = 5
30 28 29 bitr3i n = 1 n = 3 n = 5 n = 3 n = 1 n = 5
31 vex n V
32 31 eltp n 1 3 5 n = 1 n = 3 n = 5
33 prex 0 n V
34 el7g 0 n V 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 0 n = 0 3 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 3 4 0 n = 4 5 0 n = 0 5
35 33 34 ax-mp 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 0 n = 0 3 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 3 4 0 n = 4 5 0 n = 0 5
36 31 a1i 3 V n V
37 elex 3 V 3 V
38 36 37 preq2b 3 V 0 n = 0 3 n = 3
39 16 38 ax-mp 0 n = 0 3 n = 3
40 3orrot 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 1 2 0 n = 2 3 0 n = 0 1
41 4 31 pm3.2i 0 V n V
42 2ex 2 V
43 11 42 pm3.2i 1 V 2 V
44 41 43 pm3.2i 0 V n V 1 V 2 V
45 0ne1 0 1
46 0ne2 0 2
47 45 46 pm3.2i 0 1 0 2
48 47 orci 0 1 0 2 n 1 n 2
49 prneimg 0 V n V 1 V 2 V 0 1 0 2 n 1 n 2 0 n 1 2
50 44 48 49 mp2 0 n 1 2
51 50 neii ¬ 0 n = 1 2
52 id ¬ 0 n = 1 2 ¬ 0 n = 1 2
53 42 16 pm3.2i 2 V 3 V
54 41 53 pm3.2i 0 V n V 2 V 3 V
55 0re 0
56 3pos 0 < 3
57 55 56 ltneii 0 3
58 46 57 pm3.2i 0 2 0 3
59 58 orci 0 2 0 3 n 2 n 3
60 prneimg 0 V n V 2 V 3 V 0 2 0 3 n 2 n 3 0 n 2 3
61 54 59 60 mp2 0 n 2 3
62 61 neii ¬ 0 n = 2 3
63 62 a1i ¬ 0 n = 1 2 ¬ 0 n = 2 3
64 52 63 3bior2fd ¬ 0 n = 1 2 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 0 1
65 51 64 ax-mp 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 0 1
66 31 a1i 1 V n V
67 elex 1 V 1 V
68 66 67 preq2b 1 V 0 n = 0 1 n = 1
69 11 68 ax-mp 0 n = 0 1 n = 1
70 65 69 bitr3i 0 n = 1 2 0 n = 2 3 0 n = 0 1 n = 1
71 40 70 bitri 0 n = 0 1 0 n = 1 2 0 n = 2 3 n = 1
72 4nn0 4 0
73 16 72 pm3.2i 3 V 4 0
74 41 73 pm3.2i 0 V n V 3 V 4 0
75 4pos 0 < 4
76 55 75 ltneii 0 4
77 57 76 pm3.2i 0 3 0 4
78 77 orci 0 3 0 4 n 3 n 4
79 prneimg 0 V n V 3 V 4 0 0 3 0 4 n 3 n 4 0 n 3 4
80 74 78 79 mp2 0 n 3 4
81 80 neii ¬ 0 n = 3 4
82 id ¬ 0 n = 3 4 ¬ 0 n = 3 4
83 72 21 pm3.2i 4 0 5 0
84 41 83 pm3.2i 0 V n V 4 0 5 0
85 5pos 0 < 5
86 55 85 ltneii 0 5
87 76 86 pm3.2i 0 4 0 5
88 87 orci 0 4 0 5 n 4 n 5
89 prneimg 0 V n V 4 0 5 0 0 4 0 5 n 4 n 5 0 n 4 5
90 84 88 89 mp2 0 n 4 5
91 90 neii ¬ 0 n = 4 5
92 91 a1i ¬ 0 n = 3 4 ¬ 0 n = 4 5
93 82 92 3bior2fd ¬ 0 n = 3 4 0 n = 0 5 0 n = 3 4 0 n = 4 5 0 n = 0 5
94 81 93 ax-mp 0 n = 0 5 0 n = 3 4 0 n = 4 5 0 n = 0 5
95 31 a1i 5 0 n V
96 elex 5 0 5 V
97 95 96 preq2b 5 0 0 n = 0 5 n = 5
98 21 97 ax-mp 0 n = 0 5 n = 5
99 94 98 bitr3i 0 n = 3 4 0 n = 4 5 0 n = 0 5 n = 5
100 71 99 orbi12i 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 3 4 0 n = 4 5 0 n = 0 5 n = 1 n = 5
101 39 100 orbi12i 0 n = 0 3 0 n = 0 1 0 n = 1 2 0 n = 2 3 0 n = 3 4 0 n = 4 5 0 n = 0 5 n = 3 n = 1 n = 5
102 35 101 bitri 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5 n = 3 n = 1 n = 5
103 30 32 102 3bitr4i n 1 3 5 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
104 103 a1i 1 0 1 2 3 4 5 3 0 1 2 3 4 5 5 0 1 2 3 4 5 n 0 1 2 3 4 5 n 1 3 5 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
105 27 104 eqrrabd 1 0 1 2 3 4 5 3 0 1 2 3 4 5 5 0 1 2 3 4 5 1 3 5 = n 0 1 2 3 4 5 | 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
106 15 20 26 105 mp3an 1 3 5 = n 0 1 2 3 4 5 | 0 n 0 3 0 1 1 2 2 3 3 4 4 5 0 5
107 10 106 eqtr4i G NeighbVtx 0 = 1 3 5