Metamath Proof Explorer


Theorem usgrexmplvtx

Description: The vertices 0 , 1 , 2 , 3 , 4 of the graph G = <. V , E >. . (Contributed by AV, 12-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v V=04
usgrexmpl.e E=⟨“01122003”⟩
usgrexmpl.g G=VE
Assertion usgrexmplvtx VtxG=01234

Proof

Step Hyp Ref Expression
1 usgrexmpl.v V=04
2 usgrexmpl.e E=⟨“01122003”⟩
3 usgrexmpl.g G=VE
4 1 2 3 usgrexmpllem VtxG=ViEdgG=E
5 id VtxG=VVtxG=V
6 fz0to4untppr 04=01234
7 1 6 eqtri V=01234
8 5 7 eqtrdi VtxG=VVtxG=01234
9 8 adantr VtxG=ViEdgG=EVtxG=01234
10 4 9 ax-mp VtxG=01234