Metamath Proof Explorer


Theorem usgrnloop

Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e E = iEdg G
Assertion usgrnloop G USGraph x dom E E x = M N M N

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E = iEdg G
2 usgrumgr G USGraph G UMGraph
3 1 umgrnloop G UMGraph x dom E E x = M N M N
4 2 3 syl G USGraph x dom E E x = M N M N