Metamath Proof Explorer


Theorem usgrnloop

Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e E=iEdgG
Assertion usgrnloop GUSGraphxdomEEx=MNMN

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E=iEdgG
2 usgrumgr GUSGraphGUMGraph
3 1 umgrnloop GUMGraphxdomEEx=MNMN
4 2 3 syl GUSGraphxdomEEx=MNMN