Metamath Proof Explorer


Theorem umgrnloop

Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e E=iEdgG
Assertion umgrnloop GUMGraphxdomEEx=MNMN

Proof

Step Hyp Ref Expression
1 umgrnloopv.e E=iEdgG
2 eqid VtxG=VtxG
3 1 2 umgredgprv GUMGraphxdomEEx=MNMVtxGNVtxG
4 3 imp GUMGraphxdomEEx=MNMVtxGNVtxG
5 1 umgrnloopv GUMGraphMVtxGEx=MNMN
6 5 ex GUMGraphMVtxGEx=MNMN
7 6 com23 GUMGraphEx=MNMVtxGMN
8 7 adantr GUMGraphxdomEEx=MNMVtxGMN
9 8 imp GUMGraphxdomEEx=MNMVtxGMN
10 9 com12 MVtxGGUMGraphxdomEEx=MNMN
11 10 adantr MVtxGNVtxGGUMGraphxdomEEx=MNMN
12 4 11 mpcom GUMGraphxdomEEx=MNMN
13 12 rexlimdva2 GUMGraphxdomEEx=MNMN