Metamath Proof Explorer


Theorem usgrnloop0

Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e E=iEdgG
Assertion usgrnloop0 GUSGraphxdomE|Ex=U=

Proof

Step Hyp Ref Expression
1 usgrnloopv.e E=iEdgG
2 usgrumgr GUSGraphGUMGraph
3 1 umgrnloop0 GUMGraphxdomE|Ex=U=
4 2 3 syl GUSGraphxdomE|Ex=U=