Database GRAPH THEORY Undirected graphs Undirected simple graphs usgrnloop0  
				
		 
		
			
		 
		Description:   A simple graph has no loops.  (Contributed by Alexander van der Vekens , 6-Dec-2017)   (Revised by AV , 17-Oct-2020)   (Proof shortened by AV , 11-Dec-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						usgrnloopv.e   ⊢   E  =    iEdg   ⁡  G        
					 
				
					Assertion 
					usgrnloop0    ⊢   G  ∈  USGraph    →    x  ∈   dom  ⁡  E    |    E  ⁡  x   =   U        =  ∅         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							usgrnloopv.e  ⊢   E  =    iEdg   ⁡  G        
						
							2 
								
							 
							usgrumgr   ⊢   G  ∈  USGraph    →   G  ∈  UMGraph         
						
							3 
								1 
							 
							umgrnloop0   ⊢   G  ∈  UMGraph    →    x  ∈   dom  ⁡  E    |    E  ⁡  x   =   U        =  ∅         
						
							4 
								2  3 
							 
							syl   ⊢   G  ∈  USGraph    →    x  ∈   dom  ⁡  E    |    E  ⁡  x   =   U        =  ∅