Metamath Proof Explorer


Theorem ushgrunop

Description: The union of two (undirected) simple hypergraphs (with the same vertex set) represented as ordered pair: If <. V , E >. and <. V , F >. are simple hypergraphs, then <. V , E u. F >. is a (not necessarily simple) hypergraph - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g φGUSHGraph
ushgrun.h φHUSHGraph
ushgrun.e E=iEdgG
ushgrun.f F=iEdgH
ushgrun.vg V=VtxG
ushgrun.vh φVtxH=V
ushgrun.i φdomEdomF=
Assertion ushgrunop φVEFUHGraph

Proof

Step Hyp Ref Expression
1 ushgrun.g φGUSHGraph
2 ushgrun.h φHUSHGraph
3 ushgrun.e E=iEdgG
4 ushgrun.f F=iEdgH
5 ushgrun.vg V=VtxG
6 ushgrun.vh φVtxH=V
7 ushgrun.i φdomEdomF=
8 ushgruhgr GUSHGraphGUHGraph
9 1 8 syl φGUHGraph
10 ushgruhgr HUSHGraphHUHGraph
11 2 10 syl φHUHGraph
12 9 11 3 4 5 6 7 uhgrunop φVEFUHGraph