Metamath Proof Explorer


Theorem uspgr1eop

Description: A simple pseudograph with (at least) two vertices and one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020)

Ref Expression
Assertion uspgr1eop VWAXBVCVVABCUSHGraph

Proof

Step Hyp Ref Expression
1 eqid VtxVABC=VtxVABC
2 simplr VWAXBVCVAX
3 simprl VWAXBVCVBV
4 simpl VWAXVW
5 snex ABCV
6 5 a1i BVCVABCV
7 opvtxfv VWABCVVtxVABC=V
8 4 6 7 syl2an VWAXBVCVVtxVABC=V
9 3 8 eleqtrrd VWAXBVCVBVtxVABC
10 simprr VWAXBVCVCV
11 10 8 eleqtrrd VWAXBVCVCVtxVABC
12 opiedgfv VWABCViEdgVABC=ABC
13 4 6 12 syl2an VWAXBVCViEdgVABC=ABC
14 1 2 9 11 13 uspgr1e VWAXBVCVVABCUSHGraph