Metamath Proof Explorer


Theorem uspgr1ewop

Description: A simple pseudograph with (at least) two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion uspgr1ewop VWAVBVV⟨“AB”⟩USHGraph

Proof

Step Hyp Ref Expression
1 prex ABV
2 s1val ABV⟨“AB”⟩=0AB
3 1 2 mp1i VWAVBV⟨“AB”⟩=0AB
4 3 opeq2d VWAVBVV⟨“AB”⟩=V0AB
5 simp1 VWAVBVVW
6 c0ex 0V
7 6 a1i VWAVBV0V
8 3simpc VWAVBVAVBV
9 uspgr1eop VW0VAVBVV0ABUSHGraph
10 5 7 8 9 syl21anc VWAVBVV0ABUSHGraph
11 4 10 eqeltrd VWAVBVV⟨“AB”⟩USHGraph