Metamath Proof Explorer


Theorem uspgr1v1eop

Description: A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020)

Ref Expression
Assertion uspgr1v1eop VWAXBVVABUSHGraph

Proof

Step Hyp Ref Expression
1 dfsn2 B=BB
2 1 opeq2i AB=ABB
3 2 sneqi AB=ABB
4 3 opeq2i VAB=VABB
5 3simpa VWAXBVVWAX
6 id BVBV
7 6 ancri BVBVBV
8 7 3ad2ant3 VWAXBVBVBV
9 uspgr1eop VWAXBVBVVABBUSHGraph
10 5 8 9 syl2anc VWAXBVVABBUSHGraph
11 4 10 eqeltrid VWAXBVVABUSHGraph