Metamath Proof Explorer


Theorem uspgrloopedg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis uspgrloopvtx.g G=VAN
Assertion uspgrloopedg VWAXEdgG=N

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g G=VAN
2 1 fveq2i EdgG=EdgVAN
3 snex ANV
4 3 a1i AXANV
5 edgopval VWANVEdgVAN=ranAN
6 4 5 sylan2 VWAXEdgVAN=ranAN
7 2 6 eqtrid VWAXEdgG=ranAN
8 rnsnopg AXranAN=N
9 8 adantl VWAXranAN=N
10 7 9 eqtrd VWAXEdgG=N