Metamath Proof Explorer


Theorem uspgrun

Description: The union U of two simple pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses uspgrun.g φGUSHGraph
uspgrun.h φHUSHGraph
uspgrun.e E=iEdgG
uspgrun.f F=iEdgH
uspgrun.vg V=VtxG
uspgrun.vh φVtxH=V
uspgrun.i φdomEdomF=
uspgrun.u φUW
uspgrun.v φVtxU=V
uspgrun.un φiEdgU=EF
Assertion uspgrun φUUPGraph

Proof

Step Hyp Ref Expression
1 uspgrun.g φGUSHGraph
2 uspgrun.h φHUSHGraph
3 uspgrun.e E=iEdgG
4 uspgrun.f F=iEdgH
5 uspgrun.vg V=VtxG
6 uspgrun.vh φVtxH=V
7 uspgrun.i φdomEdomF=
8 uspgrun.u φUW
9 uspgrun.v φVtxU=V
10 uspgrun.un φiEdgU=EF
11 uspgrupgr GUSHGraphGUPGraph
12 1 11 syl φGUPGraph
13 uspgrupgr HUSHGraphHUPGraph
14 2 13 syl φHUPGraph
15 12 14 3 4 5 6 7 8 9 10 upgrun φUUPGraph