Metamath Proof Explorer


Theorem uspgrymrelen

Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class R of the symmetric relations on the fixed set V are equinumerous. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses uspgrbisymrel.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrbisymrel.r R=r𝒫V×V|xVyVxryyrx
Assertion uspgrymrelen VWGR

Proof

Step Hyp Ref Expression
1 uspgrbisymrel.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
2 uspgrbisymrel.r R=r𝒫V×V|xVyVxryyrx
3 eqid 𝒫PairsV=𝒫PairsV
4 3 1 uspgrspren VWG𝒫PairsV
5 3 2 sprsymrelen VW𝒫PairsVR
6 entr G𝒫PairsV𝒫PairsVRGR
7 4 5 6 syl2anc VWGR