Metamath Proof Explorer


Theorem uspgrymrelen

Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class R of the symmetric relations on the fixed set V are equinumerous. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses uspgrbisymrel.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
uspgrbisymrel.r R = r 𝒫 V × V | x V y V x r y y r x
Assertion uspgrymrelen V W G R

Proof

Step Hyp Ref Expression
1 uspgrbisymrel.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
2 uspgrbisymrel.r R = r 𝒫 V × V | x V y V x r y y r x
3 eqid 𝒫 Pairs V = 𝒫 Pairs V
4 3 1 uspgrspren V W G 𝒫 Pairs V
5 3 2 sprsymrelen V W 𝒫 Pairs V R
6 entr G 𝒫 Pairs V 𝒫 Pairs V R G R
7 4 5 6 syl2anc V W G R