Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class R of the symmetric relations on the fixed set V are equinumerous. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 27-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uspgrbisymrel.g | |- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
|
uspgrbisymrel.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
||
Assertion | uspgrymrelen | |- ( V e. W -> G ~~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrbisymrel.g | |- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
|
2 | uspgrbisymrel.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
|
3 | eqid | |- ~P ( Pairs ` V ) = ~P ( Pairs ` V ) |
|
4 | 3 1 | uspgrspren | |- ( V e. W -> G ~~ ~P ( Pairs ` V ) ) |
5 | 3 2 | sprsymrelen | |- ( V e. W -> ~P ( Pairs ` V ) ~~ R ) |
6 | entr | |- ( ( G ~~ ~P ( Pairs ` V ) /\ ~P ( Pairs ` V ) ~~ R ) -> G ~~ R ) |
|
7 | 4 5 6 | syl2anc | |- ( V e. W -> G ~~ R ) |