Metamath Proof Explorer


Theorem uspgrymrelen

Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class R of the symmetric relations on the fixed set V are equinumerous. For more details about the class G of all "simple pseudographs" see comments on uspgrbisymrel . (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses uspgrbisymrel.g
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
uspgrbisymrel.r
|- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
Assertion uspgrymrelen
|- ( V e. W -> G ~~ R )

Proof

Step Hyp Ref Expression
1 uspgrbisymrel.g
 |-  G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
2 uspgrbisymrel.r
 |-  R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
3 eqid
 |-  ~P ( Pairs ` V ) = ~P ( Pairs ` V )
4 3 1 uspgrspren
 |-  ( V e. W -> G ~~ ~P ( Pairs ` V ) )
5 3 2 sprsymrelen
 |-  ( V e. W -> ~P ( Pairs ` V ) ~~ R )
6 entr
 |-  ( ( G ~~ ~P ( Pairs ` V ) /\ ~P ( Pairs ` V ) ~~ R ) -> G ~~ R )
7 4 5 6 syl2anc
 |-  ( V e. W -> G ~~ R )