Description: The class P of subsets of the set of pairs over a fixed set V and the class R of symmetric relations on the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
| sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
||
| Assertion | sprsymrelen | |- ( V e. W -> P ~~ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
| 2 | sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
|
| 3 | 1 2 | sprbisymrel | |- ( V e. W -> E. f f : P -1-1-onto-> R ) |
| 4 | bren | |- ( P ~~ R <-> E. f f : P -1-1-onto-> R ) |
|
| 5 | 3 4 | sylibr | |- ( V e. W -> P ~~ R ) |