Metamath Proof Explorer


Theorem sprsymrelen

Description: The class P of subsets of the set of pairs over a fixed set V and the class R of symmetric relations on the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p
|- P = ~P ( Pairs ` V )
sprsymrelf.r
|- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
Assertion sprsymrelen
|- ( V e. W -> P ~~ R )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p
 |-  P = ~P ( Pairs ` V )
2 sprsymrelf.r
 |-  R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
3 1 2 sprbisymrel
 |-  ( V e. W -> E. f f : P -1-1-onto-> R )
4 bren
 |-  ( P ~~ R <-> E. f f : P -1-1-onto-> R )
5 3 4 sylibr
 |-  ( V e. W -> P ~~ R )