Metamath Proof Explorer


Theorem sprsymrelen

Description: The class P of subsets of the set of pairs over a fixed set V and the class R of symmetric relations on the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
Assertion sprsymrelen ( 𝑉𝑊𝑃𝑅 )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
3 1 2 sprbisymrel ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝑃1-1-onto𝑅 )
4 bren ( 𝑃𝑅 ↔ ∃ 𝑓 𝑓 : 𝑃1-1-onto𝑅 )
5 3 4 sylibr ( 𝑉𝑊𝑃𝑅 )