Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Unordered pairs
Set of unordered pairs
sprsymrelen
Metamath Proof Explorer
Description: The class P of subsets of the set of pairs over a fixed set V
and the class R of symmetric relations on the fixed set V are
equinumerous. (Contributed by AV , 27-Nov-2021)
Ref
Expression
Hypotheses
sprsymrelf.p
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
sprsymrelf.r
⊢ 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑟 𝑦 ↔ 𝑦 𝑟 𝑥 ) }
Assertion
sprsymrelen
⊢ ( 𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅 )
Proof
Step
Hyp
Ref
Expression
1
sprsymrelf.p
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2
sprsymrelf.r
⊢ 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑟 𝑦 ↔ 𝑦 𝑟 𝑥 ) }
3
1 2
sprbisymrel
⊢ ( 𝑉 ∈ 𝑊 → ∃ 𝑓 𝑓 : 𝑃 –1-1 -onto → 𝑅 )
4
bren
⊢ ( 𝑃 ≈ 𝑅 ↔ ∃ 𝑓 𝑓 : 𝑃 –1-1 -onto → 𝑅 )
5
3 4
sylibr
⊢ ( 𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅 )