Metamath Proof Explorer


Theorem sprbisymrel

Description: There is a bijection between the subsets of the set of pairs over a fixed set V and the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
Assertion sprbisymrel ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝑃1-1-onto𝑅 )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
3 fvex ( Pairs ‘ 𝑉 ) ∈ V
4 3 pwex 𝒫 ( Pairs ‘ 𝑉 ) ∈ V
5 1 4 eqeltri 𝑃 ∈ V
6 mptexg ( 𝑃 ∈ V → ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V )
7 5 6 mp1i ( 𝑉𝑊 → ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V )
8 eqid ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
9 1 2 8 sprsymrelf1o ( 𝑉𝑊 → ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝑃1-1-onto𝑅 )
10 f1oeq1 ( 𝑓 = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) → ( 𝑓 : 𝑃1-1-onto𝑅 ↔ ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝑃1-1-onto𝑅 ) )
11 10 spcegv ( ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) ∈ V → ( ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } ) : 𝑃1-1-onto𝑅 → ∃ 𝑓 𝑓 : 𝑃1-1-onto𝑅 ) )
12 7 9 11 sylc ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝑃1-1-onto𝑅 )