Metamath Proof Explorer


Theorem sprsymrelf1o

Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
sprsymrelf.f 𝐹 = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
Assertion sprsymrelf1o ( 𝑉𝑊𝐹 : 𝑃1-1-onto𝑅 )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
3 sprsymrelf.f 𝐹 = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
4 1 2 3 sprsymrelf1 𝐹 : 𝑃1-1𝑅
5 4 a1i ( 𝑉𝑊𝐹 : 𝑃1-1𝑅 )
6 1 2 3 sprsymrelfo ( 𝑉𝑊𝐹 : 𝑃onto𝑅 )
7 df-f1o ( 𝐹 : 𝑃1-1-onto𝑅 ↔ ( 𝐹 : 𝑃1-1𝑅𝐹 : 𝑃onto𝑅 ) )
8 5 6 7 sylanbrc ( 𝑉𝑊𝐹 : 𝑃1-1-onto𝑅 )