Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sprsymrelf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
sprsymrelf.r | ⊢ 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑟 𝑦 ↔ 𝑦 𝑟 𝑥 ) } | ||
sprsymrelf.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑃 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) | ||
Assertion | sprsymrelf1o | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝑃 –1-1-onto→ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | ⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) | |
2 | sprsymrelf.r | ⊢ 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑟 𝑦 ↔ 𝑦 𝑟 𝑥 ) } | |
3 | sprsymrelf.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑃 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑐 ∈ 𝑝 𝑐 = { 𝑥 , 𝑦 } } ) | |
4 | 1 2 3 | sprsymrelf1 | ⊢ 𝐹 : 𝑃 –1-1→ 𝑅 |
5 | 4 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝑃 –1-1→ 𝑅 ) |
6 | 1 2 3 | sprsymrelfo | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝑃 –onto→ 𝑅 ) |
7 | df-f1o | ⊢ ( 𝐹 : 𝑃 –1-1-onto→ 𝑅 ↔ ( 𝐹 : 𝑃 –1-1→ 𝑅 ∧ 𝐹 : 𝑃 –onto→ 𝑅 ) ) | |
8 | 5 6 7 | sylanbrc | ⊢ ( 𝑉 ∈ 𝑊 → 𝐹 : 𝑃 –1-1-onto→ 𝑅 ) |