Metamath Proof Explorer


Theorem sprsymrelf1

Description: The mapping F is a one-to-one function from the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
sprsymrelf.f 𝐹 = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
Assertion sprsymrelf1 𝐹 : 𝑃1-1𝑅

Proof

Step Hyp Ref Expression
1 sprsymrelf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 sprsymrelf.r 𝑅 = { 𝑟 ∈ 𝒫 ( 𝑉 × 𝑉 ) ∣ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑥 ) }
3 sprsymrelf.f 𝐹 = ( 𝑝𝑃 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑝 𝑐 = { 𝑥 , 𝑦 } } )
4 1 2 3 sprsymrelf 𝐹 : 𝑃𝑅
5 1 2 3 sprsymrelfv ( 𝑎𝑃 → ( 𝐹𝑎 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } )
6 1 2 3 sprsymrelfv ( 𝑏𝑃 → ( 𝐹𝑏 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } )
7 5 6 eqeqan12d ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } ) )
8 1 eleq2i ( 𝑎𝑃𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) )
9 vex 𝑎 ∈ V
10 9 elpw ( 𝑎 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) )
11 8 10 bitri ( 𝑎𝑃𝑎 ⊆ ( Pairs ‘ 𝑉 ) )
12 1 eleq2i ( 𝑏𝑃𝑏 ∈ 𝒫 ( Pairs ‘ 𝑉 ) )
13 vex 𝑏 ∈ V
14 13 elpw ( 𝑏 ∈ 𝒫 ( Pairs ‘ 𝑉 ) ↔ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) )
15 12 14 bitri ( 𝑏𝑃𝑏 ⊆ ( Pairs ‘ 𝑉 ) )
16 sprsymrelf1lem ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } → 𝑎𝑏 ) )
17 16 imp ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } ) → 𝑎𝑏 )
18 eqcom ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } )
19 sprsymrelf1lem ( ( 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } → 𝑏𝑎 ) )
20 18 19 syl5bi ( ( 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } → 𝑏𝑎 ) )
21 20 ancoms ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } → 𝑏𝑎 ) )
22 21 imp ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } ) → 𝑏𝑎 )
23 17 22 eqssd ( ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } ) → 𝑎 = 𝑏 )
24 23 ex ( ( 𝑎 ⊆ ( Pairs ‘ 𝑉 ) ∧ 𝑏 ⊆ ( Pairs ‘ 𝑉 ) ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } → 𝑎 = 𝑏 ) )
25 11 15 24 syl2anb ( ( 𝑎𝑃𝑏𝑃 ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑎 𝑐 = { 𝑥 , 𝑦 } } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑐𝑏 𝑐 = { 𝑥 , 𝑦 } } → 𝑎 = 𝑏 ) )
26 7 25 sylbid ( ( 𝑎𝑃𝑏𝑃 ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
27 26 rgen2 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 )
28 dff13 ( 𝐹 : 𝑃1-1𝑅 ↔ ( 𝐹 : 𝑃𝑅 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
29 4 27 28 mpbir2an 𝐹 : 𝑃1-1𝑅