Description: The mapping F is a one-to-one function from the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 19-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sprsymrelf.p | |
|
sprsymrelf.r | |
||
sprsymrelf.f | |
||
Assertion | sprsymrelf1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | |
|
2 | sprsymrelf.r | |
|
3 | sprsymrelf.f | |
|
4 | 1 2 3 | sprsymrelf | |
5 | 1 2 3 | sprsymrelfv | |
6 | 1 2 3 | sprsymrelfv | |
7 | 5 6 | eqeqan12d | |
8 | 1 | eleq2i | |
9 | vex | |
|
10 | 9 | elpw | |
11 | 8 10 | bitri | |
12 | 1 | eleq2i | |
13 | vex | |
|
14 | 13 | elpw | |
15 | 12 14 | bitri | |
16 | sprsymrelf1lem | |
|
17 | 16 | imp | |
18 | eqcom | |
|
19 | sprsymrelf1lem | |
|
20 | 18 19 | biimtrid | |
21 | 20 | ancoms | |
22 | 21 | imp | |
23 | 17 22 | eqssd | |
24 | 23 | ex | |
25 | 11 15 24 | syl2anb | |
26 | 7 25 | sylbid | |
27 | 26 | rgen2 | |
28 | dff13 | |
|
29 | 4 27 28 | mpbir2an | |