Metamath Proof Explorer


Theorem sprsymrelf1

Description: The mapping F is a one-to-one function from the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 19-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p P=𝒫PairsV
sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
sprsymrelf.f F=pPxy|cpc=xy
Assertion sprsymrelf1 F:P1-1R

Proof

Step Hyp Ref Expression
1 sprsymrelf.p P=𝒫PairsV
2 sprsymrelf.r R=r𝒫V×V|xVyVxryyrx
3 sprsymrelf.f F=pPxy|cpc=xy
4 1 2 3 sprsymrelf F:PR
5 1 2 3 sprsymrelfv aPFa=xy|cac=xy
6 1 2 3 sprsymrelfv bPFb=xy|cbc=xy
7 5 6 eqeqan12d aPbPFa=Fbxy|cac=xy=xy|cbc=xy
8 1 eleq2i aPa𝒫PairsV
9 vex aV
10 9 elpw a𝒫PairsVaPairsV
11 8 10 bitri aPaPairsV
12 1 eleq2i bPb𝒫PairsV
13 vex bV
14 13 elpw b𝒫PairsVbPairsV
15 12 14 bitri bPbPairsV
16 sprsymrelf1lem aPairsVbPairsVxy|cac=xy=xy|cbc=xyab
17 16 imp aPairsVbPairsVxy|cac=xy=xy|cbc=xyab
18 eqcom xy|cac=xy=xy|cbc=xyxy|cbc=xy=xy|cac=xy
19 sprsymrelf1lem bPairsVaPairsVxy|cbc=xy=xy|cac=xyba
20 18 19 biimtrid bPairsVaPairsVxy|cac=xy=xy|cbc=xyba
21 20 ancoms aPairsVbPairsVxy|cac=xy=xy|cbc=xyba
22 21 imp aPairsVbPairsVxy|cac=xy=xy|cbc=xyba
23 17 22 eqssd aPairsVbPairsVxy|cac=xy=xy|cbc=xya=b
24 23 ex aPairsVbPairsVxy|cac=xy=xy|cbc=xya=b
25 11 15 24 syl2anb aPbPxy|cac=xy=xy|cbc=xya=b
26 7 25 sylbid aPbPFa=Fba=b
27 26 rgen2 aPbPFa=Fba=b
28 dff13 F:P1-1RF:PRaPbPFa=Fba=b
29 4 27 28 mpbir2an F:P1-1R