| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prssspr |
|
| 2 |
1
|
ad4ant14 |
|
| 3 |
|
simpr |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
simpr |
|
| 7 |
|
eqeq1 |
|
| 8 |
7
|
adantl |
|
| 9 |
|
eqidd |
|
| 10 |
6 8 9
|
rspcedvd |
|
| 11 |
10
|
adantlr |
|
| 12 |
|
preq12 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
rexbidv |
|
| 15 |
14
|
opelopabga |
|
| 16 |
15
|
bicomd |
|
| 17 |
16
|
ad3antrrr |
|
| 18 |
11 17
|
mpbid |
|
| 19 |
18
|
ex |
|
| 20 |
5 19
|
sylbid |
|
| 21 |
|
eleq2 |
|
| 22 |
21
|
ad2antll |
|
| 23 |
13
|
rexbidv |
|
| 24 |
23
|
opelopabga |
|
| 25 |
24
|
el2v |
|
| 26 |
|
eqtr3 |
|
| 27 |
26
|
equcomd |
|
| 28 |
27
|
eleq1d |
|
| 29 |
28
|
biimpd |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
com13 |
|
| 32 |
31
|
imp |
|
| 33 |
32
|
rexlimiva |
|
| 34 |
33
|
com12 |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
adantr |
|
| 37 |
25 36
|
biimtrid |
|
| 38 |
22 37
|
sylbid |
|
| 39 |
20 38
|
syld |
|
| 40 |
39
|
expimpd |
|
| 41 |
40
|
rexlimdva2 |
|
| 42 |
41
|
rexlimiv |
|
| 43 |
2 42
|
mpcom |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
ssrdv |
|
| 46 |
45
|
ex |
|