Step |
Hyp |
Ref |
Expression |
1 |
|
prssspr |
|
2 |
1
|
ad4ant14 |
|
3 |
|
simpr |
|
4 |
3
|
adantr |
|
5 |
4
|
eleq1d |
|
6 |
|
simpr |
|
7 |
|
eqeq1 |
|
8 |
7
|
adantl |
|
9 |
|
eqidd |
|
10 |
6 8 9
|
rspcedvd |
|
11 |
10
|
adantlr |
|
12 |
|
preq12 |
|
13 |
12
|
eqeq2d |
|
14 |
13
|
rexbidv |
|
15 |
14
|
opelopabga |
|
16 |
15
|
bicomd |
|
17 |
16
|
ad3antrrr |
|
18 |
11 17
|
mpbid |
|
19 |
18
|
ex |
|
20 |
5 19
|
sylbid |
|
21 |
|
eleq2 |
|
22 |
21
|
ad2antll |
|
23 |
13
|
rexbidv |
|
24 |
23
|
opelopabga |
|
25 |
24
|
el2v |
|
26 |
|
eqtr3 |
|
27 |
26
|
equcomd |
|
28 |
27
|
eleq1d |
|
29 |
28
|
biimpd |
|
30 |
29
|
ex |
|
31 |
30
|
com13 |
|
32 |
31
|
imp |
|
33 |
32
|
rexlimiva |
|
34 |
33
|
com12 |
|
35 |
34
|
adantl |
|
36 |
35
|
adantr |
|
37 |
25 36
|
syl5bi |
|
38 |
22 37
|
sylbid |
|
39 |
20 38
|
syld |
|
40 |
39
|
expimpd |
|
41 |
40
|
rexlimdva2 |
|
42 |
41
|
rexlimiv |
|
43 |
2 42
|
mpcom |
|
44 |
43
|
ex |
|
45 |
44
|
ssrdv |
|
46 |
45
|
ex |
|