Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Unordered pairs
Set of unordered pairs
sprsymrelfolem1
Next ⟩
sprsymrelfolem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
sprsymrelfolem1
Description:
Lemma 1 for
sprsymrelfo
.
(Contributed by
AV
, 22-Nov-2021)
Ref
Expression
Hypothesis
sprsymrelfo.q
⊢
Q
=
q
∈
Pairs
⁡
V
|
∀
a
∈
V
∀
b
∈
V
q
=
a
b
→
a
R
b
Assertion
sprsymrelfolem1
⊢
Q
∈
𝒫
Pairs
⁡
V
Proof
Step
Hyp
Ref
Expression
1
sprsymrelfo.q
⊢
Q
=
q
∈
Pairs
⁡
V
|
∀
a
∈
V
∀
b
∈
V
q
=
a
b
→
a
R
b
2
fvex
⊢
Pairs
⁡
V
∈
V
3
ssrab2
⊢
q
∈
Pairs
⁡
V
|
∀
a
∈
V
∀
b
∈
V
q
=
a
b
→
a
R
b
⊆
Pairs
⁡
V
4
2
3
elpwi2
⊢
q
∈
Pairs
⁡
V
|
∀
a
∈
V
∀
b
∈
V
q
=
a
b
→
a
R
b
∈
𝒫
Pairs
⁡
V
5
1
4
eqeltri
⊢
Q
∈
𝒫
Pairs
⁡
V