Metamath Proof Explorer


Theorem sprsymrelfolem1

Description: Lemma 1 for sprsymrelfo . (Contributed by AV, 22-Nov-2021)

Ref Expression
Hypothesis sprsymrelfo.q 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎𝑉𝑏𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) }
Assertion sprsymrelfolem1 𝑄 ∈ 𝒫 ( Pairs ‘ 𝑉 )

Proof

Step Hyp Ref Expression
1 sprsymrelfo.q 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎𝑉𝑏𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) }
2 fvex ( Pairs ‘ 𝑉 ) ∈ V
3 ssrab2 { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎𝑉𝑏𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ⊆ ( Pairs ‘ 𝑉 )
4 2 3 elpwi2 { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎𝑉𝑏𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ∈ 𝒫 ( Pairs ‘ 𝑉 )
5 1 4 eqeltri 𝑄 ∈ 𝒫 ( Pairs ‘ 𝑉 )