Description: Lemma 1 for sprsymrelfo . (Contributed by AV, 22-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sprsymrelfo.q | ⊢ 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } | |
Assertion | sprsymrelfolem1 | ⊢ 𝑄 ∈ 𝒫 ( Pairs ‘ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelfo.q | ⊢ 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } | |
2 | fvex | ⊢ ( Pairs ‘ 𝑉 ) ∈ V | |
3 | ssrab2 | ⊢ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ⊆ ( Pairs ‘ 𝑉 ) | |
4 | 2 3 | elpwi2 | ⊢ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ∈ 𝒫 ( Pairs ‘ 𝑉 ) |
5 | 1 4 | eqeltri | ⊢ 𝑄 ∈ 𝒫 ( Pairs ‘ 𝑉 ) |