| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sprsymrelfo.q |
⊢ 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } |
| 2 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 3 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → 𝑉 ∈ 𝑊 ) |
| 4 |
|
ssel |
⊢ ( 𝑅 ⊆ ( 𝑉 × 𝑉 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) ) |
| 6 |
5
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) |
| 7 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 8 |
6 7
|
sylib |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 9 |
|
prelspr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
| 10 |
3 8 9
|
syl2an2r |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
| 11 |
10
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
| 12 |
2 11
|
biimtrid |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 𝑥 𝑅 𝑦 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
| 14 |
13
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
| 15 |
|
vex |
⊢ 𝑥 ∈ V |
| 16 |
|
vex |
⊢ 𝑦 ∈ V |
| 17 |
|
vex |
⊢ 𝑎 ∈ V |
| 18 |
|
vex |
⊢ 𝑏 ∈ V |
| 19 |
15 16 17 18
|
preq12b |
⊢ ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
| 20 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑎 𝑅 𝑏 ) ) |
| 21 |
20
|
biimpd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 𝑅 𝑦 → 𝑎 𝑅 𝑏 ) ) |
| 22 |
21
|
com12 |
⊢ ( 𝑥 𝑅 𝑦 → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
| 25 |
24
|
com12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
| 26 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
| 27 |
26
|
ancomsd |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
| 29 |
28
|
biimpd |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 30 |
29
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 31 |
30
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 32 |
31
|
com23 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) |
| 35 |
|
eleq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ 𝑉 ↔ 𝑎 ∈ 𝑉 ) ) |
| 36 |
|
eleq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∈ 𝑉 ↔ 𝑏 ∈ 𝑉 ) ) |
| 37 |
35 36
|
bi2anan9r |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ↔ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
| 38 |
|
breq12 |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑎 𝑅 𝑏 ) ) |
| 39 |
38
|
ancoms |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑎 𝑅 𝑏 ) ) |
| 40 |
37 39
|
imbi12d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) ) |
| 42 |
34 41
|
mpbid |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) |
| 43 |
42
|
expimpd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
| 44 |
25 43
|
jaoi |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
| 45 |
44
|
com12 |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) → 𝑎 𝑅 𝑏 ) ) |
| 46 |
19 45
|
biimtrid |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) |
| 47 |
46
|
ralrimivva |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) |
| 48 |
1
|
eleq2i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝑄 ↔ { 𝑥 , 𝑦 } ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ) |
| 49 |
|
eqeq1 |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( 𝑞 = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
| 50 |
49
|
imbi1d |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 51 |
50
|
2ralbidv |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 52 |
51
|
elrab |
⊢ ( { 𝑥 , 𝑦 } ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ↔ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 53 |
48 52
|
bitri |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝑄 ↔ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 54 |
14 47 53
|
sylanbrc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } ∈ 𝑄 ) |
| 55 |
|
eqidd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) |
| 56 |
|
eqeq1 |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) ) |
| 57 |
56
|
rspcev |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝑄 ∧ { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) |
| 58 |
54 55 57
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) |
| 59 |
58
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) ) |
| 60 |
1
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑄 ↔ 𝑐 ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ) |
| 61 |
|
eqeq1 |
⊢ ( 𝑞 = 𝑐 → ( 𝑞 = { 𝑎 , 𝑏 } ↔ 𝑐 = { 𝑎 , 𝑏 } ) ) |
| 62 |
61
|
imbi1d |
⊢ ( 𝑞 = 𝑐 → ( ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 63 |
62
|
2ralbidv |
⊢ ( 𝑞 = 𝑐 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 64 |
63
|
elrab |
⊢ ( 𝑐 ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ↔ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 65 |
60 64
|
bitri |
⊢ ( 𝑐 ∈ 𝑄 ↔ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
| 66 |
|
eleq1 |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ↔ { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
| 67 |
|
prsprel |
⊢ ( ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 68 |
15 16 67
|
mpanr12 |
⊢ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 69 |
66 68
|
biimtrdi |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 70 |
69
|
com12 |
⊢ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) → ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
| 72 |
71
|
imp |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
| 73 |
|
preq1 |
⊢ ( 𝑎 = 𝑥 → { 𝑎 , 𝑏 } = { 𝑥 , 𝑏 } ) |
| 74 |
73
|
eqeq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝑐 = { 𝑎 , 𝑏 } ↔ 𝑐 = { 𝑥 , 𝑏 } ) ) |
| 75 |
|
breq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 𝑅 𝑏 ↔ 𝑥 𝑅 𝑏 ) ) |
| 76 |
74 75
|
imbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑥 , 𝑏 } → 𝑥 𝑅 𝑏 ) ) ) |
| 77 |
|
preq2 |
⊢ ( 𝑏 = 𝑦 → { 𝑥 , 𝑏 } = { 𝑥 , 𝑦 } ) |
| 78 |
77
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝑐 = { 𝑥 , 𝑏 } ↔ 𝑐 = { 𝑥 , 𝑦 } ) ) |
| 79 |
|
breq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 𝑅 𝑏 ↔ 𝑥 𝑅 𝑦 ) ) |
| 80 |
78 79
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑐 = { 𝑥 , 𝑏 } → 𝑥 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) |
| 81 |
76 80
|
rspc2v |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) → ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) |
| 82 |
81
|
a1d |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) → ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) ) |
| 83 |
82
|
imp4c |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → 𝑥 𝑅 𝑦 ) ) |
| 84 |
72 83
|
mpcom |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → 𝑥 𝑅 𝑦 ) |
| 85 |
84
|
a1d |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
| 86 |
65 85
|
sylanb |
⊢ ( ( 𝑐 ∈ 𝑄 ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
| 87 |
86
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
| 88 |
87
|
com12 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) |
| 89 |
59 88
|
impbid |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 ↔ ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) ) |