Step |
Hyp |
Ref |
Expression |
1 |
|
sprsymrelfo.q |
⊢ 𝑄 = { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } |
2 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
3 |
|
simpl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → 𝑉 ∈ 𝑊 ) |
4 |
|
ssel |
⊢ ( 𝑅 ⊆ ( 𝑉 × 𝑉 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ) |
7 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
9 |
|
prelspr |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
10 |
3 8 9
|
syl2an2r |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
11 |
10
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
12 |
2 11
|
syl5bi |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ) → ( 𝑥 𝑅 𝑦 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
|
vex |
⊢ 𝑎 ∈ V |
18 |
|
vex |
⊢ 𝑏 ∈ V |
19 |
15 16 17 18
|
preq12b |
⊢ ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) ) |
20 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑎 𝑅 𝑏 ) ) |
21 |
20
|
biimpd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 𝑅 𝑦 → 𝑎 𝑅 𝑏 ) ) |
22 |
21
|
com12 |
⊢ ( 𝑥 𝑅 𝑦 → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑎 𝑅 𝑏 ) ) |
25 |
24
|
com12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
26 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
27 |
26
|
ancomsd |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
28 |
27
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
29 |
28
|
biimpd |
⊢ ( ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
30 |
29
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
32 |
31
|
com23 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ) |
35 |
|
eleq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ 𝑉 ↔ 𝑎 ∈ 𝑉 ) ) |
36 |
|
eleq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ∈ 𝑉 ↔ 𝑏 ∈ 𝑉 ) ) |
37 |
35 36
|
bi2anan9r |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ↔ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ) |
38 |
|
breq12 |
⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑎 𝑅 𝑏 ) ) |
39 |
38
|
ancoms |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑎 𝑅 𝑏 ) ) |
40 |
37 39
|
imbi12d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) ) |
42 |
34 41
|
mpbid |
⊢ ( ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ∧ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 𝑅 𝑏 ) ) |
43 |
42
|
expimpd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
44 |
25 43
|
jaoi |
⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) → ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 𝑅 𝑏 ) ) |
45 |
44
|
com12 |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ∨ ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) ) → 𝑎 𝑅 𝑏 ) ) |
46 |
19 45
|
syl5bi |
⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) |
47 |
46
|
ralrimivva |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) |
48 |
1
|
eleq2i |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝑄 ↔ { 𝑥 , 𝑦 } ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ) |
49 |
|
eqeq1 |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( 𝑞 = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
50 |
49
|
imbi1d |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
51 |
50
|
2ralbidv |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
52 |
51
|
elrab |
⊢ ( { 𝑥 , 𝑦 } ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ↔ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
53 |
48 52
|
bitri |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝑄 ↔ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
54 |
14 47 53
|
sylanbrc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } ∈ 𝑄 ) |
55 |
|
eqidd |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) |
56 |
|
eqeq1 |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) ) |
57 |
56
|
rspcev |
⊢ ( ( { 𝑥 , 𝑦 } ∈ 𝑄 ∧ { 𝑥 , 𝑦 } = { 𝑥 , 𝑦 } ) → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) |
58 |
54 55 57
|
syl2anc |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) |
59 |
58
|
ex |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 → ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) ) |
60 |
1
|
eleq2i |
⊢ ( 𝑐 ∈ 𝑄 ↔ 𝑐 ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ) |
61 |
|
eqeq1 |
⊢ ( 𝑞 = 𝑐 → ( 𝑞 = { 𝑎 , 𝑏 } ↔ 𝑐 = { 𝑎 , 𝑏 } ) ) |
62 |
61
|
imbi1d |
⊢ ( 𝑞 = 𝑐 → ( ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
63 |
62
|
2ralbidv |
⊢ ( 𝑞 = 𝑐 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
64 |
63
|
elrab |
⊢ ( 𝑐 ∈ { 𝑞 ∈ ( Pairs ‘ 𝑉 ) ∣ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑞 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) } ↔ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
65 |
60 64
|
bitri |
⊢ ( 𝑐 ∈ 𝑄 ↔ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ) |
66 |
|
eleq1 |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ↔ { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ) ) |
67 |
|
prsprel |
⊢ ( ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
68 |
15 16 67
|
mpanr12 |
⊢ ( { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑉 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
69 |
66 68
|
syl6bi |
⊢ ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
70 |
69
|
com12 |
⊢ ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) → ( 𝑐 = { 𝑥 , 𝑦 } → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) ) |
72 |
71
|
imp |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) |
73 |
|
preq1 |
⊢ ( 𝑎 = 𝑥 → { 𝑎 , 𝑏 } = { 𝑥 , 𝑏 } ) |
74 |
73
|
eqeq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝑐 = { 𝑎 , 𝑏 } ↔ 𝑐 = { 𝑥 , 𝑏 } ) ) |
75 |
|
breq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 𝑅 𝑏 ↔ 𝑥 𝑅 𝑏 ) ) |
76 |
74 75
|
imbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑥 , 𝑏 } → 𝑥 𝑅 𝑏 ) ) ) |
77 |
|
preq2 |
⊢ ( 𝑏 = 𝑦 → { 𝑥 , 𝑏 } = { 𝑥 , 𝑦 } ) |
78 |
77
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝑐 = { 𝑥 , 𝑏 } ↔ 𝑐 = { 𝑥 , 𝑦 } ) ) |
79 |
|
breq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 𝑅 𝑏 ↔ 𝑥 𝑅 𝑦 ) ) |
80 |
78 79
|
imbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑐 = { 𝑥 , 𝑏 } → 𝑥 𝑅 𝑏 ) ↔ ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) |
81 |
76 80
|
rspc2v |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) → ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) |
82 |
81
|
a1d |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) → ( 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) ) ) |
83 |
82
|
imp4c |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → 𝑥 𝑅 𝑦 ) ) |
84 |
72 83
|
mpcom |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → 𝑥 𝑅 𝑦 ) |
85 |
84
|
a1d |
⊢ ( ( ( 𝑐 ∈ ( Pairs ‘ 𝑉 ) ∧ ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( 𝑐 = { 𝑎 , 𝑏 } → 𝑎 𝑅 𝑏 ) ) ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
86 |
65 85
|
sylanb |
⊢ ( ( 𝑐 ∈ 𝑄 ∧ 𝑐 = { 𝑥 , 𝑦 } ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
87 |
86
|
rexlimiva |
⊢ ( ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } → ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → 𝑥 𝑅 𝑦 ) ) |
88 |
87
|
com12 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } → 𝑥 𝑅 𝑦 ) ) |
89 |
59 88
|
impbid |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑅 ⊆ ( 𝑉 × 𝑉 ) ∧ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) → ( 𝑥 𝑅 𝑦 ↔ ∃ 𝑐 ∈ 𝑄 𝑐 = { 𝑥 , 𝑦 } ) ) |