| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sprsymrelfo.q |
|
| 2 |
|
df-br |
|
| 3 |
|
simpl |
|
| 4 |
|
ssel |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
imp |
|
| 7 |
|
opelxp |
|
| 8 |
6 7
|
sylib |
|
| 9 |
|
prelspr |
|
| 10 |
3 8 9
|
syl2an2r |
|
| 11 |
10
|
ex |
|
| 12 |
2 11
|
biimtrid |
|
| 13 |
12
|
3adant3 |
|
| 14 |
13
|
imp |
|
| 15 |
|
vex |
|
| 16 |
|
vex |
|
| 17 |
|
vex |
|
| 18 |
|
vex |
|
| 19 |
15 16 17 18
|
preq12b |
|
| 20 |
|
breq12 |
|
| 21 |
20
|
biimpd |
|
| 22 |
21
|
com12 |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
com12 |
|
| 26 |
|
rsp2 |
|
| 27 |
26
|
ancomsd |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
biimpd |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
com23 |
|
| 33 |
32
|
imp |
|
| 34 |
33
|
adantl |
|
| 35 |
|
eleq1 |
|
| 36 |
|
eleq1 |
|
| 37 |
35 36
|
bi2anan9r |
|
| 38 |
|
breq12 |
|
| 39 |
38
|
ancoms |
|
| 40 |
37 39
|
imbi12d |
|
| 41 |
40
|
adantr |
|
| 42 |
34 41
|
mpbid |
|
| 43 |
42
|
expimpd |
|
| 44 |
25 43
|
jaoi |
|
| 45 |
44
|
com12 |
|
| 46 |
19 45
|
biimtrid |
|
| 47 |
46
|
ralrimivva |
|
| 48 |
1
|
eleq2i |
|
| 49 |
|
eqeq1 |
|
| 50 |
49
|
imbi1d |
|
| 51 |
50
|
2ralbidv |
|
| 52 |
51
|
elrab |
|
| 53 |
48 52
|
bitri |
|
| 54 |
14 47 53
|
sylanbrc |
|
| 55 |
|
eqidd |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
rspcev |
|
| 58 |
54 55 57
|
syl2anc |
|
| 59 |
58
|
ex |
|
| 60 |
1
|
eleq2i |
|
| 61 |
|
eqeq1 |
|
| 62 |
61
|
imbi1d |
|
| 63 |
62
|
2ralbidv |
|
| 64 |
63
|
elrab |
|
| 65 |
60 64
|
bitri |
|
| 66 |
|
eleq1 |
|
| 67 |
|
prsprel |
|
| 68 |
15 16 67
|
mpanr12 |
|
| 69 |
66 68
|
biimtrdi |
|
| 70 |
69
|
com12 |
|
| 71 |
70
|
adantr |
|
| 72 |
71
|
imp |
|
| 73 |
|
preq1 |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
|
breq1 |
|
| 76 |
74 75
|
imbi12d |
|
| 77 |
|
preq2 |
|
| 78 |
77
|
eqeq2d |
|
| 79 |
|
breq2 |
|
| 80 |
78 79
|
imbi12d |
|
| 81 |
76 80
|
rspc2v |
|
| 82 |
81
|
a1d |
|
| 83 |
82
|
imp4c |
|
| 84 |
72 83
|
mpcom |
|
| 85 |
84
|
a1d |
|
| 86 |
65 85
|
sylanb |
|
| 87 |
86
|
rexlimiva |
|
| 88 |
87
|
com12 |
|
| 89 |
59 88
|
impbid |
|