Metamath Proof Explorer


Theorem sprsymrelf1o

Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)

Ref Expression
Hypotheses sprsymrelf.p
|- P = ~P ( Pairs ` V )
sprsymrelf.r
|- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
sprsymrelf.f
|- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } )
Assertion sprsymrelf1o
|- ( V e. W -> F : P -1-1-onto-> R )

Proof

Step Hyp Ref Expression
1 sprsymrelf.p
 |-  P = ~P ( Pairs ` V )
2 sprsymrelf.r
 |-  R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) }
3 sprsymrelf.f
 |-  F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } )
4 1 2 3 sprsymrelf1
 |-  F : P -1-1-> R
5 4 a1i
 |-  ( V e. W -> F : P -1-1-> R )
6 1 2 3 sprsymrelfo
 |-  ( V e. W -> F : P -onto-> R )
7 df-f1o
 |-  ( F : P -1-1-onto-> R <-> ( F : P -1-1-> R /\ F : P -onto-> R ) )
8 5 6 7 sylanbrc
 |-  ( V e. W -> F : P -1-1-onto-> R )