Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
| sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
||
| sprsymrelf.f | |- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } ) |
||
| Assertion | sprsymrelf1o | |- ( V e. W -> F : P -1-1-onto-> R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
| 2 | sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
|
| 3 | sprsymrelf.f | |- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } ) |
|
| 4 | 1 2 3 | sprsymrelf1 | |- F : P -1-1-> R |
| 5 | 4 | a1i | |- ( V e. W -> F : P -1-1-> R ) |
| 6 | 1 2 3 | sprsymrelfo | |- ( V e. W -> F : P -onto-> R ) |
| 7 | df-f1o | |- ( F : P -1-1-onto-> R <-> ( F : P -1-1-> R /\ F : P -onto-> R ) ) |
|
| 8 | 5 6 7 | sylanbrc | |- ( V e. W -> F : P -1-1-onto-> R ) |