Description: The mapping F is a bijection between the subsets of the set of pairs over a fixed set V into the symmetric relations R on the fixed set V . (Contributed by AV, 23-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
||
sprsymrelf.f | |- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } ) |
||
Assertion | sprsymrelf1o | |- ( V e. W -> F : P -1-1-onto-> R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprsymrelf.p | |- P = ~P ( Pairs ` V ) |
|
2 | sprsymrelf.r | |- R = { r e. ~P ( V X. V ) | A. x e. V A. y e. V ( x r y <-> y r x ) } |
|
3 | sprsymrelf.f | |- F = ( p e. P |-> { <. x , y >. | E. c e. p c = { x , y } } ) |
|
4 | 1 2 3 | sprsymrelf1 | |- F : P -1-1-> R |
5 | 4 | a1i | |- ( V e. W -> F : P -1-1-> R ) |
6 | 1 2 3 | sprsymrelfo | |- ( V e. W -> F : P -onto-> R ) |
7 | df-f1o | |- ( F : P -1-1-onto-> R <-> ( F : P -1-1-> R /\ F : P -onto-> R ) ) |
|
8 | 5 6 7 | sylanbrc | |- ( V e. W -> F : P -1-1-onto-> R ) |