Metamath Proof Explorer


Theorem uspgrspren

Description: The set G of the "simple pseudographs" with a fixed set of vertices V and the class P of subsets of the set of pairs over the fixed set V are equinumerous. (Contributed by AV, 27-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p
|- P = ~P ( Pairs ` V )
uspgrsprf.g
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
Assertion uspgrspren
|- ( V e. W -> G ~~ P )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p
 |-  P = ~P ( Pairs ` V )
2 uspgrsprf.g
 |-  G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
3 1 2 uspgrbispr
 |-  ( V e. W -> E. f f : G -1-1-onto-> P )
4 bren
 |-  ( G ~~ P <-> E. f f : G -1-1-onto-> P )
5 3 4 sylibr
 |-  ( V e. W -> G ~~ P )