Metamath Proof Explorer


Theorem uspgrbispr

Description: There is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p
|- P = ~P ( Pairs ` V )
uspgrsprf.g
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
Assertion uspgrbispr
|- ( V e. W -> E. f f : G -1-1-onto-> P )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p
 |-  P = ~P ( Pairs ` V )
2 uspgrsprf.g
 |-  G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
3 1 2 uspgrex
 |-  ( V e. W -> G e. _V )
4 3 mptexd
 |-  ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) e. _V )
5 eqid
 |-  ( g e. G |-> ( 2nd ` g ) ) = ( g e. G |-> ( 2nd ` g ) )
6 1 2 5 uspgrsprf1o
 |-  ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P )
7 f1oeq1
 |-  ( f = ( g e. G |-> ( 2nd ` g ) ) -> ( f : G -1-1-onto-> P <-> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P ) )
8 4 6 7 spcedv
 |-  ( V e. W -> E. f f : G -1-1-onto-> P )