| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
| 2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
| 3 |
1 2
|
uspgrex |
|- ( V e. W -> G e. _V ) |
| 4 |
3
|
mptexd |
|- ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) e. _V ) |
| 5 |
|
eqid |
|- ( g e. G |-> ( 2nd ` g ) ) = ( g e. G |-> ( 2nd ` g ) ) |
| 6 |
1 2 5
|
uspgrsprf1o |
|- ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P ) |
| 7 |
|
f1oeq1 |
|- ( f = ( g e. G |-> ( 2nd ` g ) ) -> ( f : G -1-1-onto-> P <-> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P ) ) |
| 8 |
4 6 7
|
spcedv |
|- ( V e. W -> E. f f : G -1-1-onto-> P ) |