Metamath Proof Explorer


Theorem uspgrex

Description: The class G of all "simple pseudographs" with a fixed set of vertices V is a set. (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p
|- P = ~P ( Pairs ` V )
uspgrsprf.g
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
Assertion uspgrex
|- ( V e. W -> G e. _V )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p
 |-  P = ~P ( Pairs ` V )
2 uspgrsprf.g
 |-  G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) }
3 fvex
 |-  ( Pairs ` V ) e. _V
4 3 pwex
 |-  ~P ( Pairs ` V ) e. _V
5 1 4 eqeltri
 |-  P e. _V
6 eqid
 |-  ( g e. G |-> ( 2nd ` g ) ) = ( g e. G |-> ( 2nd ` g ) )
7 1 2 6 uspgrsprf1o
 |-  ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P )
8 f1ovv
 |-  ( ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P -> ( G e. _V <-> P e. _V ) )
9 7 8 syl
 |-  ( V e. W -> ( G e. _V <-> P e. _V ) )
10 5 9 mpbiri
 |-  ( V e. W -> G e. _V )