Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
|- P = ~P ( Pairs ` V ) |
2 |
|
uspgrsprf.g |
|- G = { <. v , e >. | ( v = V /\ E. q e. USPGraph ( ( Vtx ` q ) = v /\ ( Edg ` q ) = e ) ) } |
3 |
|
fvex |
|- ( Pairs ` V ) e. _V |
4 |
3
|
pwex |
|- ~P ( Pairs ` V ) e. _V |
5 |
1 4
|
eqeltri |
|- P e. _V |
6 |
|
eqid |
|- ( g e. G |-> ( 2nd ` g ) ) = ( g e. G |-> ( 2nd ` g ) ) |
7 |
1 2 6
|
uspgrsprf1o |
|- ( V e. W -> ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P ) |
8 |
|
f1ovv |
|- ( ( g e. G |-> ( 2nd ` g ) ) : G -1-1-onto-> P -> ( G e. _V <-> P e. _V ) ) |
9 |
7 8
|
syl |
|- ( V e. W -> ( G e. _V <-> P e. _V ) ) |
10 |
5 9
|
mpbiri |
|- ( V e. W -> G e. _V ) |