Metamath Proof Explorer


Theorem uspgrex

Description: The class G of all "simple pseudographs" with a fixed set of vertices V is a set. (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
Assertion uspgrex V W G V

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 fvex Pairs V V
4 3 pwex 𝒫 Pairs V V
5 1 4 eqeltri P V
6 eqid g G 2 nd g = g G 2 nd g
7 1 2 6 uspgrsprf1o V W g G 2 nd g : G 1-1 onto P
8 f1ovv g G 2 nd g : G 1-1 onto P G V P V
9 7 8 syl V W G V P V
10 5 9 mpbiri V W G V