Metamath Proof Explorer


Theorem uspgrex

Description: The class G of all "simple pseudographs" with a fixed set of vertices V is a set. (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
Assertion uspgrex VWGV

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 fvex PairsVV
4 3 pwex 𝒫PairsVV
5 1 4 eqeltri PV
6 eqid gG2ndg=gG2ndg
7 1 2 6 uspgrsprf1o VWgG2ndg:G1-1 ontoP
8 f1ovv gG2ndg:G1-1 ontoPGVPV
9 7 8 syl VWGVPV
10 5 9 mpbiri VWGV