Metamath Proof Explorer


Theorem uspgrbispr

Description: There is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P = 𝒫 Pairs V
uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
Assertion uspgrbispr V W f f : G 1-1 onto P

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P = 𝒫 Pairs V
2 uspgrsprf.g G = v e | v = V q USHGraph Vtx q = v Edg q = e
3 1 2 uspgrex V W G V
4 3 mptexd V W g G 2 nd g V
5 eqid g G 2 nd g = g G 2 nd g
6 1 2 5 uspgrsprf1o V W g G 2 nd g : G 1-1 onto P
7 f1oeq1 f = g G 2 nd g f : G 1-1 onto P g G 2 nd g : G 1-1 onto P
8 4 6 7 spcedv V W f f : G 1-1 onto P