Metamath Proof Explorer


Theorem uspgrbispr

Description: There is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
Assertion uspgrbispr ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑃 )

Proof

Step Hyp Ref Expression
1 uspgrsprf.p 𝑃 = 𝒫 ( Pairs ‘ 𝑉 )
2 uspgrsprf.g 𝐺 = { ⟨ 𝑣 , 𝑒 ⟩ ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) }
3 1 2 uspgrex ( 𝑉𝑊𝐺 ∈ V )
4 3 mptexd ( 𝑉𝑊 → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) ∈ V )
5 eqid ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) )
6 1 2 5 uspgrsprf1o ( 𝑉𝑊 → ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto𝑃 )
7 f1oeq1 ( 𝑓 = ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) → ( 𝑓 : 𝐺1-1-onto𝑃 ↔ ( 𝑔𝐺 ↦ ( 2nd𝑔 ) ) : 𝐺1-1-onto𝑃 ) )
8 4 6 7 spcedv ( 𝑉𝑊 → ∃ 𝑓 𝑓 : 𝐺1-1-onto𝑃 )