Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrsprf.p |
⊢ 𝑃 = 𝒫 ( Pairs ‘ 𝑉 ) |
2 |
|
uspgrsprf.g |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ ( 𝑣 = 𝑉 ∧ ∃ 𝑞 ∈ USPGraph ( ( Vtx ‘ 𝑞 ) = 𝑣 ∧ ( Edg ‘ 𝑞 ) = 𝑒 ) ) } |
3 |
1 2
|
uspgrex |
⊢ ( 𝑉 ∈ 𝑊 → 𝐺 ∈ V ) |
4 |
3
|
mptexd |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) ∈ V ) |
5 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) |
6 |
1 2 5
|
uspgrsprf1o |
⊢ ( 𝑉 ∈ 𝑊 → ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝑃 ) |
7 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) → ( 𝑓 : 𝐺 –1-1-onto→ 𝑃 ↔ ( 𝑔 ∈ 𝐺 ↦ ( 2nd ‘ 𝑔 ) ) : 𝐺 –1-1-onto→ 𝑃 ) ) |
8 |
4 6 7
|
spcedv |
⊢ ( 𝑉 ∈ 𝑊 → ∃ 𝑓 𝑓 : 𝐺 –1-1-onto→ 𝑃 ) |